Basic Gates (Slip-1)

HSC Board Questions Slip (Study of logic gates)

yasaga

You are given ICs

a) Identify them and draw their pin configurations. Write their typical specifications. (5)

,

- b) Draw the circuit diagram for testing the logic gates. (5)
- c) Connect the circuit and get it checked by the examiner. (5)

,

- d) Determine the phase difference between two signals by calculations. (5)
- e) Compare the theoretical and practical values by tabulating them. (5)
- f) Oral (5)

Circuit diagrams -

Pin configurations of the ICs -

Type of component	Specifications
IC 7404	Hex inverter, NOT gate
IC 7408	Quad 2–input AND gate
IC 7432	Quad 2–input OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

De Morgan's theorems (Slip-2)

HSC Board Questions Slip (Study of De Morgan's Theorems)

You are given ICs _,___

- a) Identify them and draw their pin configurations. Write their typical specifications. (5)
- State De Morgan's theorems and draw the circuit diagram for varifying them. (5) b)

,

- c) Connect the circuits and show them to the examiner. (5)
- d) Test the outputs for various combinations of inputs. Tabulate the results. (5)
- Compare experimentally observed results and expected results. (5) e)
- f) Oral (5)

Circuit diagrams -

NAND gate is equivalent to bubbled OR gate

14 13

2

Pin configurations of the ICs -

Jasann

NOR gate is equivalent to bubbled AND gate

12 11 10

3

IC 7408

4

5 6 LED

Type of component	Specifications
IC 7404	Hex inverter, NOT gate
IC 7408	Quad 2–input AND gate
IC 7432	Quad 2input OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Universal Building Blocks (Slip-3)

HSC Board Questions Slip (Study of Universal Building Blocks)

You are given ICs _____

- a) Identify them and draw their pin configurations. Write their typical specifications. (5)
- b) Draw the circuit diagram for constructing the basic gates using NAND/NOR gates. (5)
- c) Connect the circuit and get it checked by the examiner. (5)

•

- d) Switch on circuit and check its output for different combinations of inpts. Draw TTs. (5)
- e) Compare the theoretical and practical values in tabular form. (5)
- f) Oral (5)

Circuit diagrams -

Nodern

Nidyasagar

Pin configurations of the ICs -

Type of component	Specifications
IC 7400	Quad 2input NAND gate
IC 7402	Quad 2input NOR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
LED	color, VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Boolean Equations (Slip-4)

Circuit diagram -

The student must draw the circuit diagram of given equation. For this experiment, circuit diagram will NOT be supplied.

Pin configurations of basic ICs –

Type of component	Specifications
IC 7404	Hex inverter, NOT gate
IC 7408	Quad 2–input AND gate
IC 7432	Quad 2–input OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Ex-OR gate using Basic gates (Slip-5)-

HSC Board Questions Slip (Study of Ex-OR gate)

You are given ICs: IC 7408, IC 7432 and IC 7404.

- a) Identify them. (3) b) Define Ex–OR logic. (1) c) Write TT of Ex–OR gate. (1)
- d) Draw the logic diagram of Ex–OR gate using basic gates and connect the circuit. (10)
- e) Verify working of circuit constructed by you as per TT. (3)
- f) Convert it to Ex–NOR and again test the circuit. (2) g) Test IC 7486. (5)
- h) Oral (5)

Circuit diagram -

Pin configurations of ICs -

Specifications of components -

Type of component	Specifications
IC 7404	Hex inverter, NOT gate
IC 7408	Quad 2–input AND gate
IC 7432	Quad 2–input OR gate
IC 7486	Quad 2–input Ex-OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Designed by: Prof. Dattaraj Vidyasagar, <u>www.vsa.edu.in</u>

Ex-OR gate using NAND gates (Slip-6)

HSC Board Questions Slip (Study of Ex–OR gate)

You are given ICs: IC 7400 and IC 7486.

- b) Identify them and draw their pin diagrams showing the layout of gates. (4)
- c) Define Ex–OR logic. (1)
- d) Draw logic diagram of Ex–OR gate using NAND gates. How will you convert it to Ex–NOR? Draw the circuit again. (5)
- e) Connect the circuit of Ex–OR using NAND gates and verify the output as per TT. (10)
- f) Test IC 7486 separately. (5)
- g) Oral (5)

Circuit diagram -

Type of component	Specifications
IC 7400	Quad 2-input NAND gate
IC 7486	Quad 2–input Ex–OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Controlled Inverter (Slip-7)

HSC Board Questions Slip (Study of controlled inverter using Ex–OR)

You are given IC 7486.

- h) Identify the IC and draw its pin configuration. (5)
- i) Draw the circuit diagram of a 4-bit controlled inverter. (5)
- j) Write the working of 4-bit controlled inverter and mention its one application. (5)
- k) Connect the circuit of controlled inverter. (5)
- Demonstrate the working of your circuit for any two 4-bit binary numbers and note down the input and output numbers. Write their result and show it to examiner. (5)
- m) Oral (5)

Circuit diagram -

Pin configurations of ICs –

Type of component	Specifications
IC 7486	Quad 2input Ex-OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Noise Margin (Slip-8)

HSC Board Questions Slip (Study of controlled inverter using Ex–OR)

You are given IC 7404.

- n) Write its specifications and pin diagram. (5)
- o) Draw the circuit arrangement for determination of input and output voltage characteristics. (5)
- p) Measure the output voltages for different input voltages starting from 0Volts to 1.5Volts. Tabulate the readings (at least 15 readings). (5)
- q) Measure source current, sink current and output voltage for various loads (by connecting different number of NOT gates to output i.e. one to five NOT gates, tabulate the readings. (5)
- r) Oral (5)

Circuit diagrams -

Pin configurations of ICs -

Type of component	Specifications
IC 7404 (2 Nos.)	Hex inverter, NOT gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

RS FF using NAND/NOR gates (Slip-9)

HSC Board Questions Slip (Study of RS FF using NAND & NOR gates)

You are given IC 7400 and 7402.

- s) Identify the IC and draw its pin specifications. (2)
- t) Draw circuit diagram of RS FF using NAND gates and write its TT. (5)
- u) Construct the circuit and verify the truth table. (5)
- v) Draw circuit diagram of RS FF using NOR gates and write its TT. (5)
- w) Construct the circuit and verify the truth table. (5)
- x) Compare the TTs of RS FF using NAND and NOR gates and write the difference. (3)
- y) Oral (5)

Circuit diagrams -

Type of component	Specifications
IC 7400	Quad 2input NAND gate
IC 7402	Quad 2–input NOR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Decoder (Slip-13)

HSC Board Questions Slip (Study of Decoder)

You are given IC 7447/IC 7448 with 7-segment display.

- z) Identify the ICs and draw their specifications. (5)
- aa) Draw the circuit diagram for testing the above ICs. (5)
- bb) Connect it to obtain different digits for different BCD inputs. (5)
- cc) Test the circuit for different input conditions. (5)
- dd) Tabulate the observations. (5)
- ee) Oral (5)

Circuit diagrams -

Pin configurations -

Type of component	Specifications
IC 7447	14-pin, BCD to 7-segment decoder/driver TTL IC
FND 507	color, VF of LED segment =
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Half Adder (Slip-15)

HSC Board Questions Slip (Study of half adder)

- ff) Draw the logic diagram of half adder using logic gates. (5)
- gg) List the number of ICs required, write their specifications and pin configurations. (5)
- hh) Construct the circuit on the given board. (5)
- ii) Test the circuit for all possible input combinations. (5)
- jj) Tabulate the results. (5)
- kk) Oral (5)

Circuit diagram -

Pin configurations of ICs –

Type of component	Specifications
IC 7408	Quad 2input AND gate
IC 7486	Quad 2–input Ex-OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Full Adder (Slip-16)

Specifications of components -

Type of component	Specifications
IC 7408	Quad 2–input AND gate
IC 7486	Quad 2–input Ex-OR gate
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

around

LED

4-bit Binary Adder (Slip-17)

HSC Board Questions Slip (study of 4-bit binary adder)

- rr) You are given IC 7483. Identify the IC and write its specifications. Draw pin configuration. (5)
- ss) Construct the circuit for addition of two 4–bit binary numbers. (5)
- tt) Add following number after converting into their binary equivalents and verify the results. (10)

 $()_{10} + ()_{10}, ()_{10} + ($

vv) Oral (5)

Circuit diagram -

Type of component	Specifications
IC 7483	4-bit full adder TTL IC, supply voltage = 5V, 16 pins IC
IC 7805	+5V, 3–terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer

Schmitt Trigger Inverter (Slip-18) -

HSC Board Questions Slip (Schmitt trigger inverter)

- ww) You are given IC 7414. Identify IC and write its specifications. Draw pin configuration. (5)
- xx) Draw the circuit diagram of square wave generator using above IC. (5)
- yy) Write the expression for the period of output waveform. Calculate the values of R & C for three different frequencies. Draw the ideal output voltage waveform of the circuit. (5)
- zz) Connect the circuit for different values of R & C. Observe the waveforms on CRO. (5)
- aaa) Measure the periods and frequencies and compare them with theoretical values. (5)
- bbb) Oral. (5)

Circuit diagram -

Pin configurations of the ICs –

Type of component	Specifications
IC 7414	Schmitt trigger hex inverter, TTL IC
IC 7805	+5V, 3-terminal regulator IC
Resistors	330 Ω , ¼W, carbon composition, ±5% tolerance
Diodes Capacitors	1k Ω ,¼W, carbon composition, ±5% tolerance
	220 Ω , ¼W, carbon composition, ±5% tolerance
	180 Ω ,¼W, carbon composition, ±5% tolerance
	1N4001 rectifier diode
	1000µF/25V electrolytic filter capacitor
	0.1µF/32V, ceramic capacitor
	0.2μF/32V, ceramic capacitor
Transformer	0.05μF/32V, ceramic capacitor
	6V–0V–6V, 500mA secondary transformer

D/A Conveter (Slip-19)

HSC Board Questions Slip (Digital to Analog Converter)

ccc) Draw the circuit diagram of 4-bit D/A converter using R-2R ladder (use opamp at output).

- ddd) Assemble the circuit. (5)
- eee) Observe the output for all binary inputs (from 0000 to 1111) (5)
- fff) Tabulate the readings. (5)
- ggg) Plot the graph of analog output voltage versus digital inputs. (5)

non-inv. input (+)

supply (-ve) 4

3

Circuit diagram -

0...1

1.1.1.1

(5)

IC 741 DIL

6 output

5 offset null

Pin configurations of the IC -

Type of component	Specifications
IC 741	Operational amplifier, 8 pins, ±18Vmax dual power supply
IC 7812	+12V, 3-terminal regulator IC
IC 7912	–12V, 3–terminal regulator IC
Resistors	10k Ω , ¼W, carbon composition, ±5% tolerance
	330Ω ,¼W, carbon composition, ±5% tolerance
Potentiometer	1kΩ, linear potentiometer
Diodes	1N4001 rectifier diode
Capacitors	1000μF/25V electrolytic filter capacitor
Transformer	9V–0V–9V, 500mA secondary transformer

D/A Conveter (Slip-20)

Circuit diagram -

Type of component	Specifications
IC 741	Operational amplifier, 8 pins, \pm 18Vmax dual power supply
IC 7812	+12V, 3-terminal regulator IC
IC 7912	–12V, 3–terminal regulator IC
Resistors	10k Ω , ¼W, carbon composition, ±5% tolerance
	$330\Omega, \frac{1}{4}W$, carbon composition, $\pm 5\%$ tolerance
Potentiometer	1kΩ, linear potentiometer
Diodes	1N4001 rectifier diode
Capacitors Transformer	1000μF/25V electrolytic filter capacitor
	9V–0V–9V, 500mA secondary transformer

Diode Matrix ROM (Slip-21)

Circuit diagram -

Type of component	Specifications
Resistors	10k Ω , ¼W, carbon composition, ±5% tolerance
	$330\Omega, 1\!$
Potentiometer	1kΩ, linear potentiometer
Diodes	1N4001 rectifier diode
LEDs	color, VF =
Capacitors	$1000 \mu F/25V$ electrolytic filter capacitor
Transformer	9V–0V–9V, 500mA secondary transformer
Rotary switch	1–pole, 5–way rotary switch