Measurement of _____ Phase using I.T.B. (Slip-1)

HSC Board Questions Slip (Use of CRO)

- a) Apply input to CRO from signal generator and show it to the examiner. Calculate frequency of the observed waveform. (5)
- b) Given R1 = ____, C1 = ____, f = ____. R2 = ____, C2 = ____, f = ____. Determine phase for each combination using ITB. It must be between 30° and 60° . (5)
- c) Calculate the phase difference between two observed signals. (5)
- d) Determine the phase difference between two signals by calculations. (5)
- e) Compare the theoretical and practical values by tabulating them. (5)
- f) Oral (5)

Connection diagram –

Phase measurement using internal time base

Specifications of components -

Type of component	Specifications
Resistors	1kΩ,
	2.2k Ω,
	4.7kΩ,
	or any other resistor values,
	all $\frac{1}{4}$ W, carbon composition, ±5% tolerance
Capacitor	0.01μF/32V,
	0.1µF/32V, all polyester capacitors
CRO	Dual trace CRO
Function generator	Sine wave function generator

Color code configuration of a *carbon* resistor –

Measurement of ·

Phase using Lissajou's figures (Slip-2)

HSC Board Questions Slip (Use of CRO)

- a) Apply input to CRO from signal generator and show it to the examiner. Calculate frequency of the observed waveform. (5)
- b) Given R1 = ____, C1 = ____, f = ____. R2 = ____, C2 = ____, f = ____. Determine phase for each combination using LP. It must be between 30° and 60° . (5)
- c) Calculate the phase difference between two observed signals. (5)
- d) Determine the phase difference between two signals by calculations. (5)
- e) Compare the theoretical and practical values by tabulating them. (5)
- f) Orals (5)

Connection diagram –

Phase measurement using Lissajou's figures

Specifications of components -

Type of component	Specifications
Resistors	1kΩ,
	2.2kΩ,
	4.7kΩ,
	or other resistor values,
	all $\frac{1}{4}$ W, carbon composition, $\pm 5\%$ tolerance
Capacitor	0.01μF/32V,
	0.1µF/32V, all polyester capacitors
CRO	Dual trace CRO
Function generator	Sine wave function generator

Color code configuration of resistor -

Measurement of ·

Phase using I.T.B. & L. F. (Slip-3)

HSC Board Questions Slip (Use of CRO)

- a) Apply input to CRO from signal generator and show it to the examiner. Calculate frequency of the observed waveform. (5)
- b) Given R1 = ____, C1 = ____
 Determine phase change for 3 different frequencies using ITB. Between 30° and 60°. (5)
- c) Determine phase change for 3 different frequencies by Lissajou's figures. (5)
- d) Determine the phase difference by calculations. (5)
- e) Compare the phase difference obtained by Lissajou's figures and ITB. (5)
- f) Oral (5)

Connection diagram –

Phase measurement using Lissajou's figure & internal time base

Specifications of components -

Type of component	Specifications
Resistors	1kΩ,
	2.2kΩ,
	4.7kΩ,
	or any other resistor values,
	all $\frac{1}{4}$ W, carbon composition, \pm 5% tolerance
Capacitor	0.01μF/32V,
	0.1µF/32V, all polyester capacitors
CRO	Dual trace CRO
Function generator	Sine wave function generator

Color code configuration of resistor -

Zener Regulator

HSC Board Questions Slip (zener regulator)

- a) Draw circuit diagram and assemble the circuit for zener regulator with BR and filter. (5)
- b) Write the specifications of the components used in the circuit. (5)
- c) Connect the circuit & measure voltage across zener for different input voltages across filter. (5)
- d) Plot the graph of input voltage versus output voltage, between (170V to 270V). (5)
- e) Calculate percentage line regulation. (5)
- f) Oral (5)

Circuit diagram –

Specifications of components -

Type of component	Specifications
Resistor	47 Ω , ¼W, carbon composition, ±5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Zener diode	5.6V, 400mW zener diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer
Dimmerstat	170V to 270V variable dimmerstat

Zener Regulator

Load Regulation (Slip-5)

HSC Board Questions Slip (zener regulator)

- a) Draw circuit diagram and assemble the circuit for zener regulator with BR and filter. (5)
- b) Write the specifications of the components used in the circuit. (5)
- c) Connect the circuit & measure voltage across zener for different loads. (5)
- d) Plot the graph of output voltage versus load current. (5)
- e) Calculate percentage load regulation. (5)
- f) Oral (5)

Circuit diagram -

Specifications of components -

Type of component	Specifications
Resistor	47Ω, $\frac{1}{4}$ W, carbon composition, \pm 5% tolerance
LED	color , VF =
Diodes	1N4001 rectifier diode
Zener diode	5.6V, 400mW zener diode
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer
Dimmerstat	170V to 270V variable dimmerstat

LM317 Regulator — Line Regulation (Slip-6)

HSC Board Questions Slip (LM317 voltage regulator)

- a) Draw circuit diagram and assemble the circuit for LM317 with BR and filter. (5)
- b) Write the specifications with pin diagram for the components used in the circuit. (5)
- c) Calculate value of R1 & R2 for Vout = ____ and measure output for various line voltages. (5)
- d) Plot the graph of input voltage versus output voltage, between (170V to 270V). (5)
- e) Calculate percentage line regulation. (5)
- f) Oral (5)

Circuit diagram -

Specifications of components -

Type of component	Specifications
IC LM 317	Adjustable 3-terminal +ve voltage regulator IC,
	Vo _{min} = 1.2V, Vo _{max} = 37V, I _{Lmax} = 1.5A
	SR = 0.01%, LR = 0.1% (<i>typical values</i>),
	RR = 80dB, internal short circuit protection.
Resistors	R1 = 100 Ω , R2 = Ω , all ¼W, carbon, ±5% tolerance
Diodes, LED	1N4001 rectifier diode, color, VF =
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer
Dimmerstat	170V to 270V variable dimmerstat

LM317 Regulator — Load Regulation (Slip-7)

HSC Board Questions Slip (LM 317 voltage regulator)

- a) Draw circuit diagram and assemble the circuit for LM317 with BR and filter. (5)
- b) Write the specifications with pin diagram for the components used in the circuit. (5)
- c) Calculate value of R1 & R2 for Vout = _____ and measure output current for various loads. (5)
- d) Plot the graph of input voltage versus output voltage. (5)
- e) Calculate percentage load regulation. (5)
- f) Oral (5)

Circuit diagram -

Specifications of components -

Type of component	Specifications
IC LM 317	Adjustable 3-terminal +ve voltage regulator IC,
	Vo _{min} = 1.2V, Vo _{max} = 37V, I _{Lmax} = 1.5A
	SR = 0.01%, LR = 0.1% (<i>typical values</i>),
	RR = 80dB, internal short circuit protection.
Resistors	R1 = 100 Ω , R2 = Ω , all ¼W, carbon, ±5% tolerance
Diodes, LED	1N4001 rectifier diode, color, VF =
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer
Dimmerstat	170V to 270V variable dimmerstat

LM317 Regulator Calculate R₁ & R₂ (Slip-8)

HSC Board Questions Slip (LM 317 voltage regulator)

- a) Draw circuit diagram and assemble the circuit for LM317 with BR and filter. (5)
- b) Write the specifications with pin diagram for the components used in the circuit. (5)
- c) Calculate output voltage for various combinations of R1 and R2 (at least 5 combinations). (5)
- d) Measure output voltage for each of the above combinations. (5)
- e) Compare calculated and observed output voltages and find difference between them. (5)
- f) Oral (5)

Circuit diagram -

Specifications of components -

Type of component	Specifications
IC LM 317	Adjustable 3-terminal +ve voltage regulator IC,
	Vo _{min} = 1.2V, Vo _{max} = 37V, I _{Lmax} = 1.5A
	SR = 0.01%, LR = 0.1% <i>(typical values)</i> ,
	RR = 80dB, internal short circuit protection.
Resistors	R1 = 100 Ω , R2 = Ω , all ¼W, carbon, ±5% tolerance
Diodes, LED	1N4001 rectifier diode, color, VF =
Capacitor	1000μF/25V electrolytic capacitor
Transformer	6V–0V–6V, 500mA secondary transformer
Dimmerstat	170V to 270V variable dimmerstat

Photo Relay

Measurement of Voltages (Slip-10)

HSC Board Questions Slip (LM 317 voltage regulator)

- a) Draw circuit diagram of photo relay. (5)
- b) Enlist the components used with their specifications. (5)
- c) Assemble the circuit on a tag board. (5)
- d) Test the circuit under different light conditions so that relay switches ON & OFF and measure the voltages at base and collector of the transistor used for both conditions. (5)
- e) From above readings comment whether the transistors are in cut off or active or saturation. (5)
- f) Oral (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
BC 148	Small signal amplifier, silicon NPN transistor, (Gain = 100)
SL 100	Medium power silicon PNP transistor, (Gain = 50)
Capacitor	1000μF/25V electrolytic capacitor
Resistors	1kΩ series resistor, carbon type
LDR	Dark resistance Ω , light resistance Ω .
Relay	6V, Ω , single changeover type relay coil
Potentiometer	$470 k\Omega$, carbon composition type
Transformer	230V/6V, 500mA step down type

Photo Relay

HSC Board Questions Slip (LM 317 voltage regulator)

a) Draw circuit diagram of photo relay. (5)

Measurement of V & I (Slip-11)

- b) Enlist the components used with their specifications. (5)
- c) Assemble the circuit on a tag board. (5)
- d) Test the circuit under different light conditions so that relay switches ON & OFF and measure the voltages across various points and determine current through various paths. (10)
- e) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
BC 148	Small signal amplifier, silicon NPN transistor, (Gain = 100)
SL 100	Medium power silicon PNP transistor, (Gain = 50)
Capacitor	1000μF/25V electrolytic capacitor
Resistors	1kΩ series resistor, carbon type
LDR	Dark resistance $\\Omega$, light resistance $\\Omega$.
Relay	6V,Ω, single changeover type relay coil
Potentiometer	470kΩ, carbon composition type
Transformer	230V/6V, 500mA step down type

Inverting Amplifier — AC voltages (Slip-13)

_ (5)

,

HSC Board Questions Slip (Inverting Opamp)

- a) Draw the circuit diagram of inverting configuration of opamp. Write typical specifications. (7)
- b) Do offset nulling. (3)
- c) Determine Rf and Ri for three different values of gain _____, ____
- d) Adjust ac input voltage and measure output voltages and determine the gain. (5)
- e) Compare the calculated and observed gain in tabular form. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000µF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Inverting Amplifier — DC voltages (Slip-14)

HSC Board Questions Slip (Inverting Opamp)

- a) Draw the circuit diagram of inverting configuration of opamp. Write typical specifications. (7)
- b) Do offset nulling. (3)
- c) Determine Rf and Ri for three different values of gain _____, ____, (5)
- d) Determine output voltage for at least 3 dc input voltages for each of gain and compare calculated and observed gains. (5)
- e) Determine maximum input voltage that can be applied without output getting saturated. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, CMRR = 90dB, Ri = $2M\Omega$,
	Ro = 75 Ω , slew rate = 0.5V/ μ sec.
Capacitor	1000µF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Inverting Amplifier Frequency Response (Slip-15)

HSC Board Questions Slip (Inverting Opamp)

- a) Draw the circuit diagram of inverting configuration of opamp. Write typical specifications. (7)
- b) Do offset nulling. (3)
- c) Determine Rf and Ri for the gain _____ (5)
- d) Apply various frequencies to its input and find gain (e.g. 10Hz, 10Hz, 1kHz, 5kHz, 10kHz). (5)
- e) Plot a graph of gain versus frequency (on semi–log graph paper) and find the maximum frequency up to which gain remains constant. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000µF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Non-inverting Amplifier AC voltages (Slip-16)

_ (5)

HSC Board Questions Slip (Non-inverting Opamp)

- a) Draw circuit diagram of non-inverting configuration of opamp. Write typical specifications. (7)
- b) Do offset nulling. (3)
- c) Determine Rf and Ri for three different values of gain _____, ____,
- d) Adjust ac input voltage and measure output voltages and determine the gain. (5)
- e) Compare the calculated and observed gain in tabular form. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000μF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Non-inverting Amplifier DC voltages (Slip-17)

HSC Board Questions Slip (Non-inverting Opamp)

- a) Draw circuit diagram of non-inverting configuration of opamp. Write typical specifications. (7)
- b) Do offset nulling. (3)
- c) Determine Rf and Ri for three different values of gain _____, ____ (5)
- d) Determine output voltage for at least 3 dc input voltages for each of gain and compare calculated and observed gains. (5)
- e) Determine maximum input voltage that can be applied without output getting saturated. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
· · ·	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000µF/25V electrolytic capacitor
Resistors	10kΩ, 5kΩ, 3.3kΩ, carbon type \pm 5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Non-inverting Amplifier — Frequency Response (Slip-18)

HSC Board Questions Slip (Non-inverting Opamp)

- g) Draw circuit diagram of non-inverting configuration of opamp. Write typical specifications. (7)
- h) Do offset nulling. (3)
- i) Determine Rf and Ri for the gain _____ (5)
- j) Apply various frequencies to its input and find gain (e.g. 10Hz, 100Hz, 1kHz, 5kHz, 10kHz). (5)
- k) Plot a graph of gain versus frequency (on semi–log graph paper) and find the maximum frequency up to which gain remains constant. (5)
- I) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000μF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Inverting Adder (Slip-19)

HSC Board Questions Slip (Inverting Adder)

- a) Draw circuit diagram of inverting adder (gain=1) with 3 inputs. Write typical specifications. (7)
- b) Do offset nulling adjustment. (3)
- c) For different values of input voltages, find the output voltage, (at least 5 combinations of V1, V2 and V3 including negative voltages). (5)
- d) Compare the observed output voltages with calculated voltages. (5)
- e) Adjust V1, V2 and V3 such that output is zero for all non-zero input voltages. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000μF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Buffer (Slip-21)

HSC Board Questions Slip (Buffer)

- a) Draw circuit diagram of opamp as buffer. Write typical specifications. (7)
- b) Do offset nulling adjustment. (3)
- c) Connect potential divider across PS with high resistance value (R1=R2=100k). Calculate and measure using AMM, the voltage across one of the resistors (R2). (5)
- d) Build the circuit of buffer. Apply various inputs and measure the output using DMM. (5)
- e) Measure voltage across R2 through the buffer and compare the voltages. (5)
- f) Orals (5)

Circuit diagram -

Modern

Nidyasagar

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 741	Operational amplifier, Supply voltage = ± 18 Vmax,
	Input offset voltage = 2mV, input bias current = 80nA,
	CMRR = 90dB, input impedance = $2M\Omega$
	Output impedance = 75Ω , slew rate = $0.5V/\mu$ sec.
Capacitor	1000µF/25V electrolytic capacitor
Resistors	10k Ω , 5k Ω , 3.3k Ω , carbon type ±5% tolerance
Potentiometer	10k Ω , carbon composition type
Transformer	230V/6–0–6V, 500mA step down, center tapped

Monostable Multivibrator (Slip-26)

HSC Board Questions Slip (Monostable Multivibrator)

- a) Draw the circuit diagram of MMV using IC 555. (5)
- b) Design the value of R & C for period of T = _____ sec. (5)
- c) Construct the circuit. (5)
- d) Measure the period T for which output remains high (take at least 3–4 readings and find their average. (5)
- e) Compare the calculated and observed time. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 555	Timer IC, Supply voltage = \pm 18Vmax
LED	Color, VF
Capacitors	1000μF/25V,
	10μF/63V, electrolytic capacitor
Resistors	100kΩ, 220kΩ, 330kΩ, 470kΩ 1MΩ,
	all carbon type $\pm 5\%$ tolerance
Transformer	230V/6–0–6V, 500mA step down, center tapped

Astable Multivibrator (Slip-27)

HSC Board Questions Slip (Astable Multivibrator)

- a) Draw the circuit diagram of AMV using IC 555. (5)
- b) Design Ra and Rb and C for the frequency F = _____ and Duty cycle D = ____. (5)
- c) Construct the circuit. (5)
- d) Measure the frequency and duty cycle on CRO. Trace the waveform. (5)
- e) Compare the calculated frequency with observed frequency. (5)
- f) Orals (5)

Circuit diagram -

Specifications of components -

Type of the component	Specifications
Diodes	1N4001, silicon rectifier diode
IC 555	Timer IC, Supply voltage = \pm 18Vmax
LED	Color, VF
Capacitors	1000μF/25V,
	10μF/63V, electrolytic capacitor
Resistors	100kΩ, 220kΩ, 330kΩ, 470kΩ 1MΩ,
	all carbon type $\pm 5\%$ tolerance
Transformer	230V/6–0–6V, 500mA step down, center tapped

