Problem Statement: Calculate the colour codes of given values of resistors in following chart.

Sr.	Resistor Value	1st Band	2nd Band	Multiplier Band
1.	$10 \mathrm{k} \Omega$			
2.	330Ω			
3.	$4.7 \mathrm{k} \Omega$			
4.	$820 \mathrm{k} \Omega$			
5.	$2.2 \mathrm{M} \Omega$			
6.	4.7Ω			
7.	$1 \mathrm{k} \Omega$			
8.	470Ω			
9.	$8.2 \mathrm{k} \Omega$			
10.	$680 \mathrm{k} \Omega$			
11.	$1 \mathrm{M} \Omega$			
12.	$2.2 \mathrm{k} \Omega$			
13.	$56 \mathrm{k} \Omega$			
14.	$100 \mathrm{k} \Omega$			
15.	220Ω			
16.	$3.3 \mathrm{k} \Omega$			
17.	5.6Ω			
18.	1Ω			
19.	$82 \mathrm{k} \Omega$			
20.	$10 \mathrm{M} \Omega$			

Problem Statement: Calculate the values of resistors from the following colour codes.

1. Green Blue Yellow -
2. Blue Grey Orange -
3. Orange Orange Brown -
4. Yellow Violet Black -
5. Brown Green Golden -
6. Red Red Green -
7. Brown Red Orange -
8. White Brown Black -
9. Grey Red Red -
10. Orange Orange Orange -
11. Blue Grey Golden -
12. Red Red Golden -
13. Yellow Violet Black -
14. Brown Black Golden -
15. Orange orange Green -
16. Grey Red Green -

Learn the theory first!

Definition of Resistors in Series: When same current flows through number of resistors, they are in series.
Explanation: When resistors are in series, their resistances add together.
Examples: Suppose there are two resistors R1 and R2 in series. Then their total resistance (R) will be -

$$
R=R 1+R 2
$$

Suppose there are more number of resistors like R1, R2, R3, R4 ... then the total resistance will be -

$$
R=R 1+R 2+R 3+R 4 \ldots
$$

Definition of Resistors in Parallel: When same potential difference is produced across number of resistors, they are in parallel.

Explanation: When resistors are in parallel, the total resistance (R) is calculated using following formula.
Examples: Suppose there are two resistors R1 and R2 in parallel. Then their total resistance will be -

$$
R=\frac{R 1 \times R 2}{R 1+R 2}
$$

Suppose there are more number of resistors like R1, R2, R3, R4... then the total resistance will be -

$$
\frac{1}{R}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}+\frac{1}{R 4} \ldots
$$

Problem Statement: Calculate total resistance across A-B, of each of the following circuits

Circuit \#3

Circuit \#4

