OCTOBER 2008, DIGITAL ELECTRONICS, PAPER 2			
Ques 1 (A): Select correct alternative and rewrite the following sub question – (4 Marks)			
a) The equivalent decimal number of a maximum binary number of length on byte is			
(i)	8 (ii) 64 (iii) 255 (iv) 256		
	b) The gate ideally suited for bit comparison is		
(i)	Two input excusive NOR GateTwo input exclusive OR GateTwo input NAND (iii)Two input GateTwo input Gate	It NOR	
	c) Flip-flop is used to avoid race around condition.		
(i)	RS (ii) JK (iii) JK MS (iv) None of	the above	
	d) A/D Converter which does not use DAC is		
(i)	Simultaneous ADC (ii) Counter type ADC (iii) Successive Approx. (iv) None of type ADC	the above	
Ques 1 (B): Attempt any TWO of the following – (6 Marks)			
 a) Convert : i) (117.6 C)₁₆ = ()² ii) (13.3125)₁₀ = ()¹⁶ = ()² b) Show that using Boolean Algebra and De-Morgan's theorem. i) BC + DAC + DABC + DBC = C ii) A(A+C)(AB+C) = 0 c) Explain the concept of clock in digital circuit; hence explain the working of D-FF. 			
Ques 2 (A): Attempt any TWO of the following –(6 Marks)			
a) State and prove De-Morgan's Theorem.b) What are Derived Gates? Draw symbols and write the truth table of each.c) Explain the working of Ring Counter.			
Qu	es 2 (B): Attempt any ONE of the following – (4 M	arks)	
 a) Write a note on EBCDIC Code. b) Subtract the following numbers using 2s complement subtraction 4 i) 1011 - 101 ii) 11.01 - 10.111 iii) 11011 - 1100 iv) 10111.1 - 10011.1 			
Qu	es 3 (A): Attempt any TWO of the following – (6 M	arks)	
	 a) Define the following : i) Propagation Delay ii) Noise Margin iii) Figure of merit for digital IC b) Explain the working of CMOS NAND Gate. c) What is a Multiplexer? Explain how a 4:1 Mux can be simulated using simple 4 way sissifications. 	ngle pole	
Qu	es 3 (B): Attempt any ONE of the following – (4 M	arks)	
a) Add binary numbers 1001 and 0100 using 4 bit binary adder. Explain its working.b) What is an Ex-OR Gate? Give its symbol, truth table and explain how it is used as a parity checker.			

Recompiled by: <u>www.yashplus.com</u>

Ques 4 (A): Attempt any TWO of the following -

- a) The D_0 and D_3 inputs of a 4:1 Mux are connected to logic-0 and D_1 and D_2 inputs are connected to logic-1. Explain in brief what type of logic function the Mux will perform? When select input are given values 0 and 1 in different, combinations.
- b) Explain the working of Seven Segment Decoder Driver.
- c) What is an Encoder? Explain the working of decimal to BCD encoder using OR Gates.

Ques 4 (B): Attempt any ONE of the following -

- a) Write notes on Floppy Disc, CD ROM.
- b) Draw basic block diagram of Computer and state the function of each block.

Ques 5 (A): Attempt any TWO of the following -

- a) Explain the working of Right Shift Register.
- b) In 4 bit R-2R ladder DAC find Full Scale Output Voltage and Analog Output Voltage for 1010 input.
- c) A clock signal of 128 kHz is applied at the input of a binary counter. Frequency at the output of last flip-flop is 2kHz. What will be the maximum number of counts that can be recorded by this counter?

Ques 5 (B): Attempt any ONE of the following -

- a) Explain the working of TTL NOR Gate. What is the significance of diode in it?
- b) Explain the working of Simultaneous ADC.

OR

Ques 5 (A): Attempt any TWO of the following -

- a) Explain the working of Binary Weighted Resistor type DAC.
- b) Explain the working of Edge Triggered T- Flip-flop.
- c) What is Decoder? Explain BCD to Decimal Decoder.

Ques 5 (B): Attempt any ONE of the following -

- a) Explain the working of 4 bit Binary Ripple Counter.
- b) Implement the following multi-output combinational logic circuit using 4 to 16 line decoder. $F_1 = m(1,2,4,7,8,11,12,13)$ $F_2 = m(2,3,9,11)$

 $F_2 = m(2,3,9,11)$ $F_3 = m(10,12,13,14)$ (6 Marks)

(4 Marks)

(4 Marks)

(6 Marks)

(4 Marks)

(6 Marks)